Performance Improvement Branch

ENTERPRISE AIRSpeed

28 June 2011
AIRSpeed Fundamentals

- Properly manage RFT (Mission)
- Manage Inventory/Investment
 - Parts, equipment and facilities
- Reduce Operating Expenses (O&M,N, MPN)
- Create a Culture of Continuous Process Improvement
 - Identify and address interdependencies
 - Identify and manage constraints
 - Manage and reduce variability
 - Eliminate non-value added activities
- Revolutionize the business of Naval Aviation

“Local decisions must be aligned to the global impact”
Integration of CPI Methods

LEAN
Eliminating Non-Value Added Activities
1. Value from customers point of view
2. Identify the Value Stream
3. Develop Process Flow
4. Create a Pull System
5. Relentless Pursuit of Perfection

Theory of Constraints
Constraint Mitigation
1. Identify the Constraint
2. Exploit the Constraint
3. Subordinate to the Constraint
4. Elevate the System’s Constraint
5. Repeat Step 1, as the Constraint has probably moved

Six Sigma
Reducing Process Variation
1. Define the issue/problem
2. Measure the critical process
3. Analyze measured data
4. Improve the process
5. Control the process improvements

CPI
BASIC TENANTS OF AIRSPEED

Tenet #1: Create an integrated system that operates as a Pull system vs. a Push system.

“Reducing inventory, investments, and costs by increasing the speed and responsiveness of the enterprise.”

Tenet #2: Right-size inventory to support actual demand usage patterns.

“Hold enough stock to cover maximum demand during the TRR”

Tenet #3: Match repair and repair costs (AFM/AVDLR) to actual Demand Patterns

“Choke induction until needed to replenish a buffer”

Tenet #4: Move from the management of inventory levels to the management of the flow of inventory in time, i.e., Buffer

“Once a buffer is properly sized, Buffer Management ensures parts make it to the shelf on time to prevent outages.”
Enterprise AIRSpeed Implementations

• All Tasked are assigned, approved and funded by the Enterprise AIRSpeed Executive Steering Committee (CNAF N41, N42, COMFRC and HQMC)

• CVN/L-Class Implementations
 • All CVN’s complete with the exception of CVN-71 (awaiting completion of RCOH, TBD 2012/2013)
 • L-Class complete
 • USS PELELIU (LHA-5)
 • USS KEARSARGE (LHD-3)
 • USS BOXER (LHD-4)
 • USS BATAAN (LHD-5)
 • L-Class outstanding
 • USS IWO JIMA (LHD-7) scheduled for 11-29 Jul 2011
 • USS Makin Island (LHD-8) TBD
 • USS BONHOMME RICHARD (LHD-6) TBD
 • USS WASP (LHD-1) TBD

• IMA/MALS Status
 • 26 Completed to include follow-ups

• FRC
 • Artisan Integration/TRR REDUX
 • 8 complete/ 2 in work

• E2E USMC Implementation
 • 2 complete/ 11 in work / 12 TBD over 9 TMS
Enterprise AIRSpeed Policy changes

- Green Belt NEC 9564
 - May 2009- Approved by NAVMAC
 - Jun 2009-CNAF message announcing Core Green Belt approval released

- Green Belt AQD
 - Sept 2010-Approved by NAVMAC

- CPI Handbook
 - Approved by CNAF
 - Posted on the following sites:
 SharePoint: https://www.portal.navy.mil/comnavairfor/N42/N422/n422b/AIRSpeed/Instructions%20%20References/Forms/AllItems.aspx
 CPIMS: https://don.hqda.pentagon.mil/CPIMS/project/Summary1.epage?sp=Uhjigogo0000hppodmam0000000

- Supply AIRSSpeed Policy

- Proposed NAMP changes
 - In-route to NAMP voting committee
 - Changes include: Adds Commanding Officer, Maintenance Officer, Division officer, Production Control, and Work Center Supervisor AIRSpeed billet responsibilities.

CSEC Questions are pending approval of this CP and subsequently the AMMT’s review and approval of proposed/applicable questions.
Critical Elements of CPI Success

- Leadership is engaged
- Voice of the Customer drives improvements
- CPI events aligned to strategic goals of the organization
- A focused Implementation Plan is executed to maximize results
- Event outcomes are tracked and reviewed to sustain the gains
- CPI teams are properly resourced
 - Trained and experienced personnel
 - Build self-sufficient infrastructure
 - Promotes culture change
- Replication opportunities are shared
Maintenance Officer requirements

- Understanding CPI methods, concepts and analysis tools
- Designate the following leaders:
 - AIRSpeed / CPI Officer (NAMP requirement)
 - BMT administrator (Level II sites only) (NAMP requirement)
 - Evaluating incorporation of training into NEC 6304/MOS 6049/6046
 - CPIMS administrator (NAMP requirement)
 - CNAF utilizes SharePoint to mitigate ships inability to access CPIMS
 - Establish and staff a CPI Work Center or Division, as applicable
 - Provide leadership and management oversight for the CPI program
 - Attend all tollgates reviews for CPI projects conducted within the maintenance department
White Belt
- Current NAMP Requirement: All Hands within 90 Days
- Proposed NAMP Requirement: All Hands within 180 Days

Yellow Belt
- Current NAMP Requirement: All Hands within 90 Days
- Proposed NAMP Requirement: Command Designated Personnel

LCM Initial
- Current NAMP Requirement: No Requirement
- Proposed NAMP Requirement: All Hands within 180 Days

Champion / Project Sponsor
- Current NAMP Requirement: No Requirement
- Proposed NAMP Requirement: MO, AMO, MMCO, PCO, Division Officer and Command Designated Personnel

Green Belt
- Current NAMP Requirement: Two qualified GBs per division and four certified AIRSpeed GBs in the core team.
- Proposed NAMP Requirement: No Change.

LCI Practitioner
- Current NAMP Requirement: Two TOC Experts per division and four AIRSpeed TOC certified core members.
- Proposed NAMP Requirement: No Change.

Black Belt
- Current NAMP Requirement: One AIRSpeed core members certified as a Black Belt.
- Proposed NAMP Requirement: No Change.

Master Black Belt
- Current NAMP Requirement: No Requirement.
- Proposed NAMP Requirement: No Change
On-Line CPI Training Available

- **Navy Knowledge On-line (NKO):**
 - White Belt (NETC-LSSWB-1.0): Provides an introduction to CPI principles, tools and vocabulary
 - Logistics Chain Management (NAVAIR-LCM-0001.3): Application of CPI tools and methods

- **Defense Acquisition University:**
 - CPI Familiarization (CLE 015): Familiarizes students with CPI methodologies to improve overall organizational performance
 - Intro to Lean Enterprise Concepts (CLE 004): Focuses on the lean concepts
 - Lean Six Sigma for Manufacturing (CLE 007): Builds on CLE 004 and summarizes the most important lean tools and techniques
 - Six Sigma: Concepts and Processes (CLE 008): Focuses on Six Sigma concepts providing an in-depth overview of Six Sigma processes and tools
Class Room CPI Training

- **Yellow Belt:** 1-2 days in length providing an overview of Lean, Six Sigma and Theory of Constraints

- **Process Sponsor – Champion:** 1-2 days in length providing an overview of CPI tools, charter development, and opportunity identification

- **Green Belt:** 5 days in length designed to equip Green Belt candidates with the necessary skills to participate in and with experience lead improvement projects and events

- **Black Belt:** One week per month over a 4-5 month period for Green Belt certified candidates possessing the attitude and aptitude to carry out complex statistical analysis projects
• **Buffer Management Tool (BMT)** - The primary purpose of the Buffer Management Tool (BMT) is to allow Maintenance and Supply to effectively operate within the Naval Aviation Enterprise (NAE) Continuous Processing Improvement (CPI) environment on a daily basis. The Buffer Management Tool (BMT) is an MS Access application designed to help "I" level work centers track their workload (historical and current) in a time domain. This tool was developed with business rules to manage work prioritization by Time to Reliably Replenish (TRR), with the emphasis on reliability.

• **Enterprise Logistics Analysis Tool (ELAT)**
 - Pulls data from AFAST & R-Supply
 - Facilitate understanding of relationship between time and inventory
 - Analyze demand patterns and TRR
 - Enables site-to-site TRR comparison

• **AIRSpeed Analysis Tool (AAT)** - Is a CPI analysis tool to ensure that physical inventory is positioned appropriately with the correct supply quantities to meet customer demands. Capabilities will include:
 - Access to On-Station TRR performance data
 - Opportunities to “right size” buffer sizes
 - Site-to-Site comparison of like items
 - Allows for comparison of the current buffer size decisions compared to historical buffer performance

• **Continuous Process Management System (CPIMS)** – DON centralized database used to track and report Lean Six Sigma (LSS)/Continuous Process Improvement (CPI) project data and benefits. It supports data sharing, real time information viewing, financial benefits metrics and complies with resource management guidance.
Historical TRR Detail Analysis Report

This Report is a Summary Report that lists FGs Inducted in and provides a TRR Summary Data and WC TRR Performance against design for each. Records will be listed in descending Order of TRR Design sequence followed by Work Center sequence.

Work Center 63E Detail Summary

<table>
<thead>
<tr>
<th>FG3</th>
<th>NOMEN.</th>
<th>Part Number</th>
<th>NTYN</th>
<th>Design Biz</th>
<th>R7T</th>
<th>Buff. Per Pot</th>
<th>Buff. Status</th>
<th>Inducted TRR</th>
<th>Exceeded TRR</th>
<th>WC TRR Performance Bias</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: The table above lists the historical TRR detail analysis report for the Work Center 63E. Each row represents a specific FG with details such as part number, NTYN, design biz, R7T, buffer per pot, buffer status, and Inducted TRR, Exceeded TRR, and WC TRR performance bias. The columns provide a summary of the TRR performance with green, yellow, red, and black statuses.

Wednesday, June 01, 2011
BMT Summary Report site 2

Historical TRR Detail Analysis Report

This Report is a Summary Report that will list FG's Induced in and provides a TRR Summary Data and WC TRR Performance against design for each. Records will be listed in descending Total Black sequence within ascending Work Center sequence.

Work Center 63E Detail Summary

<table>
<thead>
<tr>
<th>FG</th>
<th>NOMEN</th>
<th>Design Bsz</th>
<th>Buffer Status</th>
<th>Induced</th>
<th>Exceeded TRR</th>
<th>WC TRR Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR17</td>
<td>TRANSMITTER</td>
<td>MET</td>
<td>01-220-0045</td>
<td>22</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>AHRB</td>
<td>POWER CONVERTER</td>
<td>358890-0-05</td>
<td>01-242-8050</td>
<td>0</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>GMPIR</td>
<td>REULATOR ASSY</td>
<td>S</td>
<td>058802-0-20</td>
<td>01-456-5008</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>BY81</td>
<td>RADAR DATA</td>
<td>352976-1-12</td>
<td>01-413-4767</td>
<td>0</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>PVV9</td>
<td>RR PROCESSOR TRX</td>
<td>352105-0-20</td>
<td>01-118-3334</td>
<td>0</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>FR15B</td>
<td>REDIEVER ELECT</td>
<td>358205-1-12</td>
<td>01-247-5205</td>
<td>13</td>
<td>5</td>
<td>35.5% YELLOW</td>
</tr>
<tr>
<td>RX12I</td>
<td>CIRCUIT ASSEMBLY</td>
<td>358290-01</td>
<td>01-242-9702</td>
<td>4</td>
<td>2</td>
<td>50.0% YELLOW</td>
</tr>
<tr>
<td>VLL4</td>
<td>POWER SUPPLY</td>
<td>ME</td>
<td>358290-0-10</td>
<td>01-406-7787</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>GHKB</td>
<td>CIRCUIT CARD</td>
<td>ASSEMBLY</td>
<td>347240-0-25</td>
<td>01-182-3333</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GM181</td>
<td>GLOBAL ASSEMBLY</td>
<td>SER</td>
<td>347240-0-30</td>
<td>01-452-1777</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>RDBS</td>
<td>PROCESSOR</td>
<td>RA</td>
<td>352941-1-12</td>
<td>01-215-0124</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>VL93</td>
<td>RADAR RECEIVER</td>
<td>M</td>
<td>352950-0-10</td>
<td>01-400-1194</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AX3B</td>
<td>ELECTRONIC COMP</td>
<td>358300-0-06</td>
<td>01-270-0115</td>
<td>1</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>FKB3</td>
<td>COMPUTER-Power</td>
<td>M</td>
<td>358350-1-15</td>
<td>01-270-3545</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GW18</td>
<td>ANTENNA</td>
<td>CONT</td>
<td>352930-1-14</td>
<td>01-216-7531</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>JX11</td>
<td>S BIT ANALOG</td>
<td>INTER</td>
<td>303160-0-10</td>
<td>01-500-5985</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VIL24</td>
<td>ANTENNA</td>
<td>ASSEMBLY</td>
<td>352950-1-15</td>
<td>01-225-2062</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GP2</td>
<td>COMPUTER-Power</td>
<td>M</td>
<td>352930-1-15</td>
<td>01-215-5711</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BSCB</td>
<td>INTERMEDIATE</td>
<td>PLL</td>
<td>265710-0-20</td>
<td>01-247-7760</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GST3</td>
<td>ANTENNA</td>
<td>MET</td>
<td>352930-0-10</td>
<td>01-257-0175</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ARKB</td>
<td>GENERATOR</td>
<td>TRANS</td>
<td>265730-0-20</td>
<td>01-186-4787</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AR2B</td>
<td>CARD</td>
<td>358300-0-50</td>
<td>01-201-0222</td>
<td>1</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>FAXA</td>
<td>TRANSMITTER</td>
<td>038972-0-0</td>
<td>01-11-1202</td>
<td>0</td>
<td>0</td>
<td>0.0% GREEN</td>
</tr>
<tr>
<td>BPGB</td>
<td>ELECTRONIC</td>
<td>COMP</td>
<td>357910-0-10</td>
<td>01-225-9026</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RQ91</td>
<td>CIRCUIT ASSEMBLY</td>
<td>353910-0-25</td>
<td>01-220-4160</td>
<td>1</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>GB1B</td>
<td>POWER SUPPLY</td>
<td>M</td>
<td>353950-0-15</td>
<td>01-199-2570</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>DJRA</td>
<td>CARD</td>
<td>353930-0-10</td>
<td>01-162-9430</td>
<td>0</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>BY8A</td>
<td>RADAR</td>
<td>SET</td>
<td>SU</td>
<td>059806-0-15</td>
<td>01-415-2725</td>
<td>0</td>
</tr>
<tr>
<td>QMB2</td>
<td>POST PROCESSOR</td>
<td>353911-0-0</td>
<td>01-162-9427</td>
<td>0</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>FT3</td>
<td>RADIO FREQUENCY</td>
<td>353970-0-20</td>
<td>01-142-8972</td>
<td>0</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>VY4</td>
<td>DRIVER ASSEMBLY</td>
<td>LOW</td>
<td>357865-8-10</td>
<td>01-416-3810</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BT7B</td>
<td>POWER CONVERSION</td>
<td>351290-0-05</td>
<td>01-414-4532</td>
<td>1</td>
<td>0</td>
<td>100.0% RED</td>
</tr>
<tr>
<td>FJWB</td>
<td>I/O QUAD CONVERTER</td>
<td>A</td>
<td>357820-0-0</td>
<td>01-150-8798</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TRR Status

- **Green**: 40
- **Yellow**: 10
- **Red**: 73
- **Black**: 15

Design/Achieved

- **90%**: 115
- **80%**: 0
- **70%**: 11
- **60%**: 9

TRR Status

- **Green**: 10
- **Yellow**: 10
- **Red**: 73
- **Black**: 15
Historical TRR Detail Analysis Report

Work Center 63A Detail Summary

<table>
<thead>
<tr>
<th>FG C</th>
<th>NOMEN</th>
<th>FRC</th>
<th>Design Bz</th>
<th>Buffer Status</th>
<th>Exceeded TRR</th>
<th>Longest TRR</th>
<th>Shortest TRR</th>
<th>Design Achieved TRR</th>
<th>TRR Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWMT1</td>
<td>XMTR W10</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>VLMK</td>
<td>RECEIVER, RADAR</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>11</td>
<td>0</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>ANRB</td>
<td>POWER CONVERTER</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>51</td>
<td>20</td>
<td>5.0%</td>
<td>Green</td>
</tr>
<tr>
<td>SKT3</td>
<td>ANTENNA</td>
<td>0</td>
<td>0</td>
<td>50.0%</td>
<td>YELLOW</td>
<td>115</td>
<td>24</td>
<td>25.0%</td>
<td>Green</td>
</tr>
<tr>
<td>RR17</td>
<td>TRANSMITTER</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>135</td>
<td>24</td>
<td>25.0%</td>
<td>Green</td>
</tr>
<tr>
<td>Ek5D</td>
<td>CIRCUIT CARD ASSE</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>32</td>
<td>10</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>GAH</td>
<td>TMM950 POWER CO</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>72</td>
<td>18</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>RY12</td>
<td>CIRCUIT CARD ASSE</td>
<td>0</td>
<td>0</td>
<td>50.0%</td>
<td>YELLOW</td>
<td>27</td>
<td>11</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>KMB</td>
<td>ELECTRONIC COMP</td>
<td>0</td>
<td>0</td>
<td>25.0%</td>
<td>GREEN</td>
<td>44</td>
<td>11</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>FK3M</td>
<td>RECEIVER, EXCITER</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>28</td>
<td>9</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>BRIY</td>
<td>RADAR SET SU</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>12</td>
<td>5</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>GNPA</td>
<td>1AS 1MTR SWI</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>19</td>
<td>8</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>EY1A</td>
<td>2A1 CIRC AF</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>17</td>
<td>7</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>KX5D</td>
<td>CIRCUIT CARD ASSE</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>13</td>
<td>10</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>GB1B</td>
<td>POWER SUPPLY</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>AM0A</td>
<td>AN 1524A</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>16</td>
<td>8</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>FA1A</td>
<td>2A12 CIRC AF</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>9</td>
<td>5</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>RGBE</td>
<td>PROCESSOR, RADAR</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>14</td>
<td>5</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>EKCE</td>
<td>RADAR, RADAR</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>4</td>
<td>4</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>KRXG</td>
<td>ELECTRONIC C</td>
<td>0</td>
<td>0</td>
<td>50.0%</td>
<td>YELLOW</td>
<td>20</td>
<td>8</td>
<td>5.0%</td>
<td>Green</td>
</tr>
<tr>
<td>DCM</td>
<td>XMTR W10</td>
<td>0</td>
<td>0</td>
<td>50.0%</td>
<td>YELLOW</td>
<td>55</td>
<td>4</td>
<td>25.0%</td>
<td>Green</td>
</tr>
<tr>
<td>AFJ</td>
<td>SVM22 T/S</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>12</td>
<td>4</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>JQYB</td>
<td>RR 2A7</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>3</td>
<td>3</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>AX3B</td>
<td>1AS6 1742</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>3</td>
<td>3</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>PPBV</td>
<td>TRANSFORMER SUB</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>9</td>
<td>3</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>NH11</td>
<td>CIRCUIT POWER</td>
<td>0</td>
<td>0</td>
<td>100.0%</td>
<td>RED</td>
<td>3</td>
<td>3</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>AR1B</td>
<td>1AS7 1470</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>8</td>
<td>3</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>HPTA</td>
<td>CAA/2500MMX/WRP</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>2</td>
<td>2</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>FX2B</td>
<td>COMPUTER POWER</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>4</td>
<td>2</td>
<td>0.0%</td>
<td>Green</td>
</tr>
<tr>
<td>GAFA</td>
<td>WCU FILTER</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>GREEN</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>Green</td>
</tr>
</tbody>
</table>

BMT Summary Report site 3

This Report is a Summary Report that will list FGs Induced in and provides a TRR Summary Data and WC TRR Performance against design for each. Records will be listed in descending Total Bz sequence within ascending Work Center sequence.

Monday, June 13, 2011

NAE_ESC_FY10Accomplishments_28Sept2010

UNCLASSIFIED / For Official Use Only
Historical FGC Query/Analysis

Part 1 - Historical Performance

TRR Processing Summary

<table>
<thead>
<tr>
<th>Inducted</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC 63E</td>
<td>220</td>
<td>16</td>
<td>14</td>
<td>50</td>
</tr>
</tbody>
</table>

- Current TRR Status: Percent in Zone
 - Green: 7%
 - Yellow: 8%
 - Red: 22%
 - Black: 64%

Historical Achieved TRR/Current Design Analysis

<table>
<thead>
<tr>
<th>WC</th>
<th>Inductions</th>
<th>Shortest</th>
<th>Longest</th>
<th>90 Pct</th>
<th>Current Design</th>
<th>Design/Achieved Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>63A</td>
<td>185</td>
<td>0</td>
<td>144</td>
<td>22</td>
<td>17 Y 2</td>
<td>-5 29.4%</td>
</tr>
</tbody>
</table>

Historical FGC Query/Analysis

Part 1 - Historical Performance

TRR Processing Summary

<table>
<thead>
<tr>
<th>Inducted</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC 63E</td>
<td>139</td>
<td>46</td>
<td>14</td>
<td>5</td>
</tr>
</tbody>
</table>

- Current TRR Status: Percent in Zone
 - Green: 33%
 - Yellow: 18%
 - Red: 4%
 - Black: 53%

Historical Achieved TRR/Current Design Analysis

<table>
<thead>
<tr>
<th>WC</th>
<th>Inductions</th>
<th>Shortest</th>
<th>Longest</th>
<th>90 Pct</th>
<th>Current Design</th>
<th>Design/Achieved Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>63E</td>
<td>139</td>
<td>0</td>
<td>386</td>
<td>118</td>
<td>20 Y 2</td>
<td>-98 -490.0%</td>
</tr>
</tbody>
</table>
Historical FGC Query/Analysis

Part 1 - Historical Performance

<table>
<thead>
<tr>
<th>TRR Processing Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inducted</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>75</td>
</tr>
</tbody>
</table>

Historical Achieved TRR/Current Design Analysis

<table>
<thead>
<tr>
<th>WC</th>
<th>Inductions</th>
<th>Shortest</th>
<th>Longest</th>
<th>90 Pct</th>
<th>Current Design TRR</th>
<th>Transitional Layer</th>
<th>Design/Achieved Difference</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>63E</td>
<td>75</td>
<td>1</td>
<td>1064</td>
<td>497</td>
<td>7</td>
<td>Y</td>
<td>-0.4940</td>
<td>-7000.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRR Processing Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inducted</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

Historical Achieved TRR/Current Design Analysis

<table>
<thead>
<tr>
<th>WC</th>
<th>Inductions</th>
<th>Shortest</th>
<th>Longest</th>
<th>90 Pct</th>
<th>Current Design TRR</th>
<th>Transitional Layer</th>
<th>Design/Achieved Difference</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>63A</td>
<td>117</td>
<td>0</td>
<td>128</td>
<td>45</td>
<td>17</td>
<td>Y</td>
<td>-0.268</td>
<td>-164.7%</td>
</tr>
</tbody>
</table>
Best Practices Replication Process

Event:
- Process
- Practice

COC Validation

CPIMS Data Entry

Recognition

Promulgation
“Capturing” NAE Best Practices
Process Flow

NAVAIR 6.7.2.1
PIB

- Retrieve Data Communication Package entered from respective COC, from CPIMS
- Prepare Brief to MSC&M/ ESC
 - Problem statement
 - POA&M
 - Stakeholder Obstacles

M&SCM/ ESC

- Provided SA on Best Practice Initiatives
- Have visibility on Millstones and obstacles
- Ability to engage where appropriate to remove obstacles across competing stakeholders

Opportunity

Command CO/ Executive Project Sponsor/ Champion

- Completed Project with replication potential
- Sustain process locally
- Determines if it fits replication criteria
- Submit Best Practice Replication Request (define what part of project may be replicated)
- Select Best Practice replication request in CPIMS

COC/ Stakeholders

Respective NAE Chain of Command/ Process Owner

- Validate NAE Strategic alignment
- Identify stakeholders (NAMP / DLA/ ICP/ etc.) and appropriate policy document
- Create POA&M to implement/ resolve/ pilot
- Complete Data Communication Package to capture blueprint for moving forward
- Concur/ Reject in CPIMS

Sustainment

Entry into appropriate Policy/ Business Practice Documents

- Governing process/ business practice documents will be updated to ensure new “improved” best practice will survive a personnel turnover.
- CPIMS will maintain the history of the process and changes for future use, and validation of improvement.
Steps for success

• Embrace AIRSpeed CPI & choose excellence as the norm.
• Communicate the Mission, Vision, and Goals of the organization to all personnel – it’s not just a sign on the wall.
• Determine level of CPI talent you have on board.
• Use AMAs to clarify NAMP requirements and disseminate best practices.
• Use CPI principles to find areas to improve and evaluate everything you do from a process perspective.
• Ensure all hands participate in CPI events and apply concepts to their own jobs and work areas.

Find opportunities for success…..
• Increased sortie effectiveness
• Reduced demand/consumption pattern
• Reduced TAT for scheduled maintenance events
• Potential for manpower savings
• Potential to close RFT gap

(page 29 of “The CNAF Handbook for AIRSpeed and Continuous Process Improvement (CPI)”)}
CPI End State Objectives

• CPI is an organizational philosophy that is part of the way we do business

• CPI is used to provide high quality support of mission readiness at affordable cost

• CPI is understood and valued by stakeholders and process owners

• Every major organization has a CPI Implementation Champion
AIRSpeed Points of Contact

• Enterprise AIRSpeed Project Office (AIR 6.7.2.1)
 • CDR Jim Parish, 301-995-2973
 • Brenda Sanders, 301-757-2642

• COMNAVAIRFOR N422
 • Mr. John Vilicich, 619-545-1320

• COMFRC
 • Mr. Arthur Reiersen, 619-733-8515

• HQMC ASL-40
 • Major John DiGiovanni, 703-693-9713
Questions
Backup Slide
• A process and method for creating and maintaining an organized, clean, high-performance workplace

• A conditioning discipline for continuous process improvement

• Creates a proper environment for standard work

• Pre-requisite to perfect quality

• Encourages visual control

• Intolerant to waste

• Places high value on safety
The Steps of 5S

- **Sort**
 - Segregate & Discard
 - Red Tag Process

- **Straighten**
 - Arrange & Identify
 - Physically rearrange - organize

- **Shine**
 - Clean Daily
 - Remove reasons for contaminants

- **Standardize**
 - Revisit Frequently
 - Implement visible signals to ensure team understanding

- **Sustain**
 - Motivate To Sustain
 - Develop communication strategies
 - Involve Leadership
5S – Before & After PEB’s

Before 5S

A Place for Everything

Everything in its Place

After 5S